LCD-TVの動画質改善に関する一検討

栗田泰市郎 情報通信研究機構 (NICT)

IMID 2009にて発表 (No. 59-1, 2009.10.15) A Guideline for Motion-Image-Quality Improvement of LCD-TVs

1

Contents

- 1. Introduction
- 2. Short Review of Motion-Image-Quality of LCD-TVs
- 3. Dynamic Response of Video System
- 4. Improvement of Dynamic Response
- 5. Discussion
- 6. Conclusions

1. Introduction

 \checkmark Motion-image-quality of LCD-TVs has been significantly improved in recent years.

• Many LCDs with improved motion-image-quality have been put into market .

- Improvement techniques: scanning BL, Black insertion, 120 Hz, etc.
- SONY put 240 Hz LCDs into the market, in March, 2009.
- LG demonstrates a 480 Hz LCD at IMID 2009.

What is the Target of Motion-Image-Quality Improvement?

 \checkmark However, the motion-image-quality of LCDs seems to be still insufficient for pictures containing fast and/or fine motion images.

 \checkmark On the other hand, there is another cause of motion-image-quality deterioration in video system, or cameras.

 \checkmark Some people are in doubts about the target of motion-image-quality improvement of LCDs and video system.

What is the Target of Motion-Image-Quality Improvement?

 \checkmark A guideline for deciding desirable parameters on temporal characteristics of LCD-TVs and video system will be presented, based on:

- Dynamic spatial frequency response analysis
- Past results of subjective evaluation tests on motion-image-quality

2. Short Review of Motion-Image-Quality of LCD-TVs

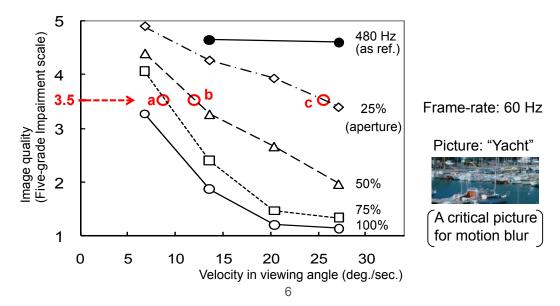
✓ Main issue on motion-image-quality of LCDs is motion blur.

- ✓ There are two causes of motion blur of LCDs:
 - Response time of liquid crystal (LCRT)
 - Hold-type display by active-matrix driving
- ✓ Improvement of LCRT has progressed in recent years.

✓ Hold-type display of active-matrix has become major factor of motion-imagequality deterioration on LCD-TVs.

✓ Characteristics of motion-image-quality of hold-type display:

- Degree of the deterioration of the quality varies with images or pictures.
- Motion-image-quality is simply deteriorated with an increase of motion velocity of images by motion blur.
- The quality falls below the acceptable level at a medium motion velocity.
- There are two basic methods to improve the motion blur:
 - <u>Setting a temporal aperture</u> to displayed light (e.g. scanning BL, B.I.)
 - Increase of frame-rate of display (e.g. 120 Hz, 240 Hz)


5

"Acceptable Limit (AL)" of Motion-Image-Quality

 A result of a subjective test on motion-image quality of hold-type display (Kurita, SID '01 [1])

• For several temporal apertures

- Scored by "Five-grade Impairment Scale" (ITU-R BT.500)
- Score 3.5 is called <u>"Acceptable Limit (AL)" of image-quality deterioration.</u>

 \checkmark MTF (Modulation Transfer Function, or spatial frequency response) is a common measure to estimate blur of image devices, or video systems.

✓ It has been confirmed that <u>perceived dynamic MTF of hold-type display is</u> degraded with <u>a sinc (sin(x)/x) function</u>. (Kurita, Saito, IDW '98 [3])

✓ Another motion blur, <u>camera integration blur</u>, exists in video system.

• Dynamic response of camera is degraded with <u>a sinc function</u>.

• The integration blur also can be <u>improved by setting a temporal aperture</u>, <u>or camera shutter</u>.

- ✓ How is the total dynamic response of video system?
- ✓ Knowing the system response is important to find the target of LCD-TVs.

7

Definition of Dynamic Spatial Frequency Response (1)

✓ Horizontal spatial frequency characteristic is discussed, as an example.

 \checkmark It is assumed that an image is moving in horizontal direction, with a constant velocity.

- ✓ Notation:
 - Spatial frequency: fx (cycle/pixel)
 - Spatial frequency in TV lines: $f'x = fx \times 2Ny$ (TV line)

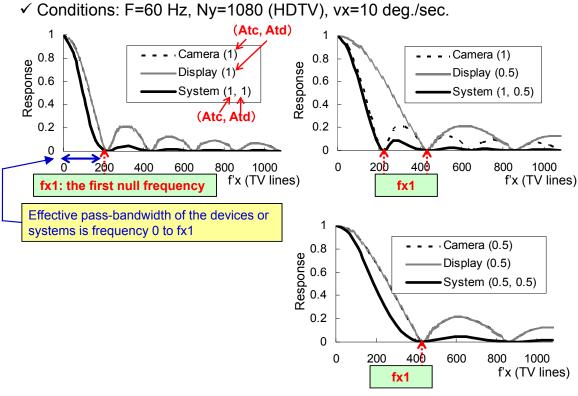
(Ny: vertical number of pixels or scanning lines in a video frame)

- Frame-rate: F (Hz) (common for camera and display)
- Motion velocity of the image: vx (degree/second)

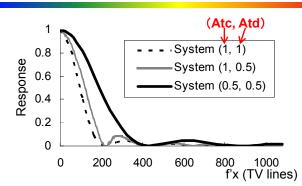
✓ <u>Assume that an observer watches a display at the standard viewing</u> <u>distance (3H for HDTV, ITU-R BT.710)</u>.

 \checkmark In this condition, a pixel corresponds to a minute or 1/60 degree in viewing angle from the observer

• Displacement of motion image in a frame: $X = vx \times 60$ /F (pixel)


Definition of Dynamic Spatial Frequency Response (2)

- ✓ Introduction of <u>*Temporal Aperture</u>*</u>
 - Temporal aperture ratio: <u>At (0 to 1, 1: a whole frame)</u>
 - Camera temporal aperture: <u>Atc (0 to 1)</u> (e.g. camera shutter)
 - Display temporal aperture: <u>Atd (0 to 1)</u> (e.g. scanning BL)
- ✓ Dynamic spatial frequency responses
 - <u>Camera</u> response:
 - $\frac{\text{Rc}(fx) = \sin(\pi \cdot fx \cdot X \cdot Atc) / (\pi \cdot fx \cdot X \cdot Atc)}{\pi \cdot fx \cdot X \cdot Atc}$
 - <u>Display</u> response:
 Rd(fx) = sin(π•fx•X•Atd) /(π•fx•X•Atd)
- ✓ System response is the product of camera response and display response.
 - <u>System</u> response: $Rs(fx) = Rc(fx) \times Rd(fx)$



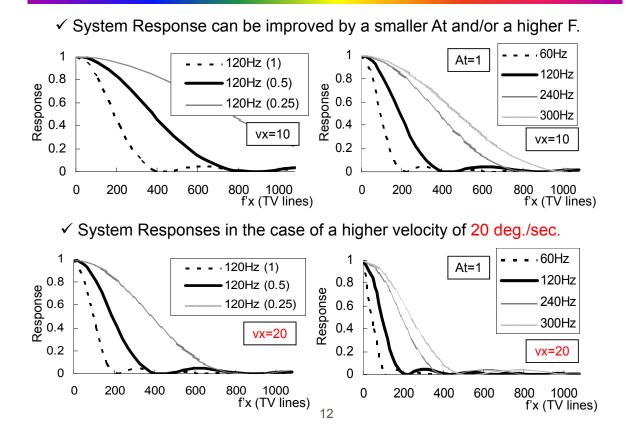
9

Calculated Responses for Different Temporal Apertures

Comparison of System Responses

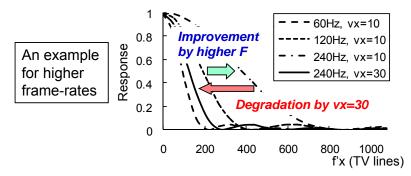
 \checkmark The response of System (1, 0.5) is little improved compared with that of System (1, 1), because of the camera response with Atc of 1.

 \checkmark Response will be significantly improved, if both temporal apertures are improved, as System (0.5, 0.5).


 \checkmark The both motion blur in camera and display should be improved for achieving a good motion-image-quality.

 \checkmark Setting temporal apertures of camera and display to the same value is efficient on a viewpoint of system cost.

 \checkmark We set the temporal apertures to <u>common parameter At</u>, or <u>Atc = Atd = At.</u>



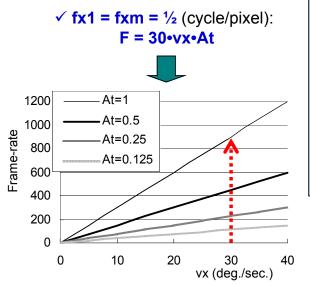
4. Improvement of Dynamic Response

 \checkmark A smaller temporal aperture (At) and/or a higher frame-rate (F) can significantly improve system dynamic response.

✓ However, an increase of motion velocity easily cancels the improvement.

 \checkmark Setting frame-rate to extremely high, to overcome the increase of vx, will make devices and systems difficult to realize.

 \checkmark <u>Setting At to extremely small will cause other deterioration</u> on performance and motion-image-quality, such as lower sensitivity, <u>flicker</u> or <u>jerkiness</u>.


✓ All artifacts should be negligible to achieve a true fine motion-image-quality.

13

5. Discussion

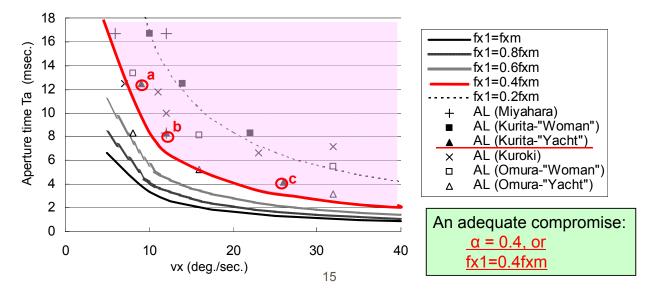
✓ How should we decide the temporal aperture At and frame-rate F?

 \checkmark A desirable condition will be <u>setting</u> the first null frequency <u>fx1 to</u> maximum available frequency, or Nyquist spatial frequency of the system, <u>fxm (1080 TV</u> lines for HDTV).

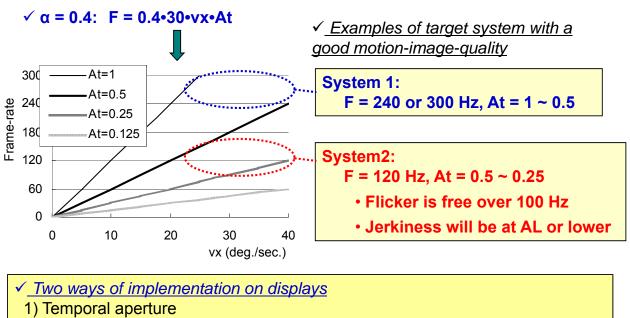
 \checkmark It is known that our eye can trace motion object up to around 25 to 30 degree per second.

 \checkmark To improve motion-image-quality up to 30 degree per second:

• An extremely high frame-rate of F=900 Hz (At=1)


• An extremely small aperture of <u>At=1/15</u> (F=60 Hz)

✓ These requirements seem not to be realistic on system design.


✓ An adequate compromise will be necessary

A Compromise Based on Acceptable Limit of Image Quality

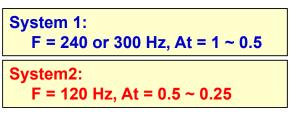
- ✓ <u>An idea of the compromise</u>
 - Set $fx1 = \alpha \cdot fxm$ ($\alpha = 0$ to 1) and select the α adequately.
 - $F = \alpha \cdot 30 \cdot vx \cdot At$
 - Set the target to acceptable limit (AL) of motion-image-quality.
 - Extract the pairs of vx and "aperture time" Ta (= At/F), corresponding to AL.

System Parameters and Display

Example: (input) 120 Hz \Rightarrow (25% scanning BL) \Rightarrow (display) <u>120 Hz</u>, <u>At=0.25</u> 2) Up-conversion

Example: (input) 120 Hz \Rightarrow (up-conversion) \Rightarrow (display) <u>480 Hz</u> (At=1)

Conclusions


✓ Motion-image-quality of LCD-TVs and video system was investigated by dynamic spatial frequency response, as a measure to estimate motion blur.

 \checkmark A common frame-rate is assumed for camera and display.

 \checkmark Setting temporal apertures of camera and display to the same value is efficient on a viewpoint of system cost.

 \checkmark An ideal device or system with perfect motion-image-quality seems not to be realistic.

✓ Two sets of parameters for camera, display and video system with a universally good motion-image-quality are proposed based on acceptable limit on image-quality for critical pictures.

✓ The realization of devices and systems with those parameters is desired.

17