Standard of Electronic Industries Association of Japan

EIAJ ED-5513

Stub Series Terminated Logic for 2.5 Volts (SSTL-2)
(A 2.5V Supply Voltage based Interface Standard for Digital ICs)

Established in August, 1998

Prepared by
Technical Standardization Committee on Semiconductor Device Package

Published by
Electronic Industries Association of Japan

5-13, Nishi-shinbashi 1-chome, Minato-ku, Tokyo 105-0062, Japan
Printed in Japan
Standard of Electronic Industries Association of Japan

Stub Series Terminated Logic for 2.5Volts (SSTL_2)

INDEX

<Standard Specification>

1 Scope .. 1
1.1 Standard structure ... 1
1.2 Rationale and assumptions .. 1

2 Supply Voltage and Logic Input Levels ... 3
2.1 Supply voltage levels ... 3
2.2 Input parametric .. 5
2.3 AC test conditions ... 5

3 SSTL_2 Output Buffers ... 7
3.0 Overview ... 7
3.1 SSTL_2 Class I output buffers .. 11
3.1.1 Push-pull output buffer for symmetrically single parallel
 terminated loads with series resistor \(V_{TT} = 0.5 \times V_{DDQ}\) 11
3.1.2 SSTL_2 Class I output AC test conditions .. 11
3.2 SSTL_2 Class II output buffers .. 13
3.2.1 Push-pull output buffer for symmetrically double parallel
 terminated loads with series resistor \(V_{TT} = 0.5 \times V_{DDQ}\) 13
3.2.2 SSTL_2 Class II output AC test conditions ... 15

<Reference>

4. Other Application (For reference only) .. 17
4.1 Push-pull output buffer for un-terminated loads ... 17
4.2 Push-pull output buffer for symmetrically single
 parallel terminated loads \(V_{TT} = 0.5 \times V_{DDQ}\) 17
4.3 Push-pull output buffer for externally source series terminated loads 19
4.4 Push-pull output buffer for symmetrically double parallel
 terminated loads \(V_{TT} = 0.5 \times V_{DDQ}\) .. 19
Standard of Electronic Industries Association of Japan

Stub Series Terminated Logic for 2.5 Volts (SSTL_2)
(A 2.5V Supply Voltage based Interface Standard for Digital ICs)

1. Scope
This standard defines the input, output specifications and AC test conditions for devices that are designed to operate in the SSTL_2 logic switching range, nominally 0V to 2.5V. The standard may be applied to ICs operating with separate VDD and VDDQ supply voltages. In many cases VDD and VDDQ will have the same voltage level. The VDD value is not specified in this standard other than that VDDQ value may not exceed that of VDD.

1.1 Standard structure
The standard is defined in three sections:
The first section defines pertinent supply voltage requirements common to all compliant ICs.
The second section defines the minimum DC and AC input parametric requirements and AC test conditions for inputs on compliant devices.
The third section specifies the minimum required output characteristics of, and AC test conditions for, compliant outputs targeted for various application environments. The output specifications are divided into two classes, Class I and Class II, which are distinguished by driver requirements and application. A given IC need not be equipped with both classes of output drivers, but each must support at least one to claim SSTL_2 output compliance.
The full input reference level (VREF) range specified is required on each IC in order to allow any SSTL_2 IC to receive signals from any SSTL_2 output driver.

1.2 Rationale and assumptions
The SSTL_2 standard has been developed particularly with the objective of providing a relatively simple upgrade path from MOS push-pull interface designs. The standard is particularly intended to improve operation in situations where buses must be isolated from relatively large stubs. External resistors provide this isolation and also reduce the on-chip power dissipation of the drivers. Busses may be terminated by resistors to an external termination voltage.
Actual selection of the resistor values is a system design decision and beyond the scope of this standard. However in order to provide a basis, the driver characteristics will be derived in terms of a typical 50Ω environment.

While driver characteristics are derived from a 50Ω environment, this standard will work for other impedance levels. The system designer will be able to vary impedance levels, termination resistors and supply voltage and be able to calculate the effect on system voltage margins. This is accomplished precisely because drivers and receivers are specified independently of each other. The standard defines a reference voltage VREF which is used at the receivers as well as a voltage VTT to which termination resistors are connected. In typical applications VTT tracks as a ratio of VDDQ. In turn VREF will be given the value of VTT. In some standards this ratio equals 0.5.
2 Supply Voltage and Logic Input Levels

The standard defines both AC and DC input signal values. Making this distinction is important for the design of high gain, differential, receivers that are required. The AC values are chosen to indicate the levels at which the receiver must meet its timing specifications. The DC values are chosen such that the final logic state is unambiguously defined, that is once the receiver input has crossed this value, the receiver will change to and maintain the new logic state. The reason for this approach is that many input wave-forms will include a certain amount of "ringing". The system designer can be sure that the device will switch state a certain amount of time after the input has crossed AC threshold and not switch back as long as the input stays beyond the DC threshold. The relationship of the different levels is shown in Figure 2.1. An example of ringing is illustrated in the dotted wave-form.

![Waveform Diagram](_waveform.png)

Figure 2.1 SSTL_2 Input voltage levels

2.1 Supply voltage levels

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Nom.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD</td>
<td>Device supply voltage</td>
<td>V_{DDQ}</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_IGN</td>
<td>Output supply voltage</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>V_REF</td>
<td>Input reference voltage</td>
<td>1.15</td>
<td>1.25</td>
<td>1.35</td>
<td>V</td>
<td>2.3</td>
</tr>
<tr>
<td>V_{TT}</td>
<td>Termination voltage</td>
<td>V_{ARE} - 0.04</td>
<td>V_{ARE}</td>
<td>V_{REF} + 0.04</td>
<td>V</td>
<td>4</td>
</tr>
</tbody>
</table>

<Notes>

1. There is no specific device V_{DD} supply voltage requirement for SSTL_2 compliance. However, under all conditions V_{DDQ} must be less than or equal to V_{DD}.

2. The value of V_{REF} may be selected by the user to provide optimum noise margin in the system. Typically the value of V_{REF} is expected to be about 0.5 × V_{DDQ} of the transmitting device and V_{ARE} is expected to track variations in V_{DDQ}.

3. Peak to peak AC noise on V_{ARE} may not exceed ± 0.2% V_{REF} (DC).

4. V_{TT} of transmitting device must track V_{ARE} of receiving device.
2.2 Input parametric

Table 2.2-a Input DC logic levels

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{ih} (DC)$</td>
<td>DC input logic high</td>
<td>$V_{ref} + 0.18$</td>
<td>$V_{ddq} + 0.3$</td>
<td>V</td>
<td>1</td>
</tr>
<tr>
<td>$V_{il} (DC)$</td>
<td>DC input logic low</td>
<td>-0.3</td>
<td>$V_{ref} - 0.18$</td>
<td>V</td>
<td>1</td>
</tr>
</tbody>
</table>

<Note>
Within this standard, it is the relationship of the V_{ddq} of the driving device and the V_{ref} of the receiving device that determines noise margins. However, in the case of V_{ih} (Max.) (i.e., input overdrive) it is the V_{ddq} of the receiving device that is referenced. In the case where a device is implemented that supports SSTL_2 inputs but has no SSTL_2 outputs (e.g., a translator), and therefore no V_{ddq} supply voltage connection, inputs must tolerate input overdrive to 3.0 V (High corner $V_{ddq} + 300$ mV).

Table 2.2-b Input AC logic levels

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{ih} (AC)$</td>
<td>AC input logic high</td>
<td>$V_{ref} + 0.35$</td>
<td>V_{ddq}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>$V_{il} (AC)$</td>
<td>AC input logic low</td>
<td>$V_{ref} - 0.35$</td>
<td>V_{ddq}</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

2.3 AC test conditions

The AC input test conditions are specified to be able to obtain reliable, reproducible test results in an automated test environment, where a relatively high noise environment makes it difficult to create clean signals with limited swing. The tester may therefore supply signals with a 1.5 V peak to peak swing to drive the receiving device. Note however, that all timing specifications are still set relative to the AC input level. This is illustrated in Figure 2.3.

Table 2.3 AC input test conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ref}</td>
<td>Input reference voltage</td>
<td>$0.5 \times V_{ddq}$</td>
<td>V</td>
<td>1,4</td>
</tr>
<tr>
<td>$V_{swing} (max)$</td>
<td>Input signal maximum peak to peak swing</td>
<td>1.5</td>
<td>V</td>
<td>1,2</td>
</tr>
<tr>
<td>SLEW</td>
<td>Input signal minimum slew rate</td>
<td>1.0</td>
<td>V_{min}</td>
<td>3</td>
</tr>
</tbody>
</table>

<Notes>
1. In all cases, input waveform timing is referenced to the input signal crossing through the V_{ref} level applied to the device under test. Table 2.1 identifies the V_{ref} range supported in SSTL_2.
2. Compliant devices must still meet the $V_{ih}(AC)$ and $V_{il}(AC)$ specifications under actual use conditions.
3. The 1V/ns input signal minimum slew rate is to be maintained in the $V_{ih max}(AC)$ to $V_{ih min}(AC)$ range of the input signal swing, consistent with the AC logic specification of table 2.2-b. See also Figure 2.3.
4. It was agreed in JEDEC discussions that AC test conditions could be measured under nominal voltage conditions as long as the supplier can demonstrate by analysis that the device will meet its timing specifications under all supported voltage conditions.
3 SSTL_2 Output Buffers

3.0 Overview

This specification sets minimum requirements for output buffers in such a way that when they are applied within the range of power supply voltages specified in SSTL_2 and are used in conjunction with SSTL_2 input receivers then the input receiver specifications can be met or exceeded. The specifications are quite different from traditional specifications, where minimum values for V_{OH} and maximum values for V_{OL} are set which apply to the entire supply range. In SSTL_2, the input voltage provided to the receiver depends on the driver as well as on the termination voltage and termination resistors. Figure 3.0 shows the typical DC environment that the output buffer is presented with.

![Figure 3.0 Typical Output Buffer (Driver) environment](image)

Of particular interest here are the values V_{OUT} and V_{IN}. These values depend not only on the current drive capabilities of the buffer, but also on the values of V_{DDO} and V_{TT} (V_{RH} is equal to V_{TT}). The important condition is that V_{IN} be at least 380mV above or below V_{REF} as a result of V_{OH1} attaining its maximum low or its minimum high value. As will be seen later, the two cases of interest for SSTL 2 are where the series resistor RS equals 25Ω and the termination resistor RT equals 50Ω (for Class I) or 25Ω (for Class II). V_{TT} is specified as being equal to 0.5 V_{DDO}.
In order to meet the 380mV minimum requirement for V_{IN}, a minimum of 7.6mA must be developed across RT if RT equals 50Ω (Class I) or 15.2mA in case RT equals 25Ω (Class II). The driver specification now must guarantee that these values of V_{IN} are obtained in the worst case conditions specified by this standard.

Table 3.0 Spread sheet showing how the limits of SSTL_2 circuit voltages depending on V_{DDO}.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Class I</th>
<th>Class I</th>
<th>Class I</th>
<th>Class I</th>
<th>Class II</th>
<th>Class II</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DDO}</td>
<td>V</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td>2.3</td>
<td>2.5</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>V_{TT1min}</td>
<td>V</td>
<td>1.11</td>
<td>1.25</td>
<td>1.31</td>
<td>1.11</td>
<td>1.25</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>V_{TTmax}</td>
<td>V</td>
<td>1.29</td>
<td>1.25</td>
<td>1.39</td>
<td>1.19</td>
<td>1.25</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>V_{TH}</td>
<td>V</td>
<td>1.15</td>
<td>1.25</td>
<td>1.35</td>
<td>1.15</td>
<td>1.25</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>Ω</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>Ω</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Delta V_{IN}</td>
<td>V</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Delta V_{OUT1}</td>
<td>V</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Delta V_{OUT2}</td>
<td>V</td>
<td>0.57</td>
<td>0.57</td>
<td>0.57</td>
<td>0.76</td>
<td>0.76</td>
<td>0.76</td>
<td></td>
</tr>
</tbody>
</table>

Output High Drive

Minimum Voltage at V_{RH}	V	1.57	1.63	1.77	1.57	1.63	1.77
Minimum Voltage at V_{OUT}	V	1.76	1.82	1.96	1.95	2.01	2.15
Minimum Output Current	mA	-7.6	-7.6	-7.6	-15.2	-15.2	-15.2
Maximum On Resistance	Ω	71.1	89.5	97.4	23.0	32.2	36.2

Output Low Drive

Maximum Voltage at V_{IN}	V	0.75	0.87	0.93	0.73	0.87	0.93
Maximum Voltage at V_{OUT}	V	0.34	0.68	0.74	0.35	0.49	0.55
Minimum Output Current	mA	7.6	7.6	7.6	15.2	15.2	15.2
Maximum On Resistance	Ω	71.1	89.5	97.4	23.0	32.2	36.2

Delta V_{OUT1} (dV_{OUT1}) is voltage across RT in Figure 3.0
Delta V_{OUT2} (dV_{OUT2}) is total voltage across RS and RT in Figure 3.0

These values follow from an analysis of Figure 3.0 with fixed driver current. Thus, for output low voltage, $V_{IN} = V_{TH} - 1 \times RT$; $V_{OUT} = V_{TH} - 1 \times (RT + RS)$; On Resistance = $V_{TM1} - (RT + RS)$. As can be seen from Table 3.0 the most stringent requirements will result where $V_{DDO} = 2.3$ V, since for that case the output driver transistors must have the lowest "on" resistance. If the driver outputs are sized for this condition, then for all other V_{DDO} voltage applications, the resulting input signal will be larger than the minimum required 380mV.
3.1 SSSL_2 Class I output buffers

3.1.1 Push-pull output buffer for symmetrically single parallel terminated loads with series resistor. \((V_{\text{TT}} = 0.5 \times V_{\text{DDQ}})\)

Table 3.1-1 Output DC current drives

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOH (DC)</td>
<td>Output minimum source DC current</td>
<td>-7.6</td>
<td></td>
<td>mA</td>
<td>1,3,4</td>
</tr>
<tr>
<td>IOL (DC)</td>
<td>Output minimum sink DC current</td>
<td>7.6</td>
<td></td>
<td>mA</td>
<td>2,3,4</td>
</tr>
</tbody>
</table>

<Notes>
1. \(V_{\text{DDQ}} = 2.3\, \text{V}; \quad V_{\text{OUT}} = V_{\text{DDQ}} - 0.62\, \text{V}\)
2. \(V_{\text{DDQ}} = 2.3\, \text{V}; \quad V_{\text{OUT}} = 0.54\, \text{V}\).
3. The DC value of \(V_{\text{REF}}\) applied to the receiving device is expected to be set to \(V_{\text{TT}}\).
4. The values of \(V_{\text{DDQ}}\) and \(V_{\text{OUT}}\) are based on \(V_{\text{DDQ}} = 2.3\, \text{V}\) and \(V_{\text{TT}} = 1.11\, \text{V}\). They are used to test device current drive capability which ultimately delivers acceptable noise margin for an SSSL_2 receiver. Under these conditions \(V_{\text{OH}}\) is \(1.68\, \text{V}\) and \(V_{\text{OL}}\) is \(0.54\, \text{V}\). Under other conditions for \(V_{\text{DDQ}}\) and \(V_{\text{TT}}\) the typical output levels are discussed in Section 3.0 (Overview).

![Figure 3.1 An example of SSSL_2 Class I, symmetrically single parallel terminated output load, and series resistor](image)

3.1.2 SSSL_2 Class I output AC test conditions

This testing regimen is used to verify SSSL_2 Class I type output buffers (push-pull output buffers designed for symmetrically single parallel terminated loads with series resistor).

This section is added to set the conditions under which the driver AC specifications can be tested. The test circuit is assumed to be similar to the circuit shown in Figure 3.1. It was agreed in JEDEC discussions that AC test conditions could be measured under nominal voltage conditions as long as the supplier can demonstrate by analysis, that the device will meet its timing specifications under all supported voltage conditions. Table 3.1-b assumes that \(+/- 0.38\, \text{V}\) must be developed across the \(50\, \Omega\) termination resistor at \(V_{\text{IN}}\). With a series resistor of \(25\, \Omega\) this translates into a minimum requirement of \(0.57\, \text{V}\) swing relative to \(V_{\text{TT}}\), at the output of the device.
Table 3.1-b AC test conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Minimum required output pull-up under AC test load</td>
<td>$V_{TT} + 0.57$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Maximum required output pull-down under AC test load</td>
<td>$V_{TT} - 0.57$</td>
<td>V</td>
</tr>
<tr>
<td>V_{CTR}</td>
<td>Output timing measurement reference level</td>
<td>$0.5 \times V_{DDQ}$</td>
<td>V</td>
</tr>
</tbody>
</table>

V_{DDQ} of the device under test is referenced.

3.2 SSTL_2 Class II output buffers

3.2.1 Push-pull output buffer for symmetrically double parallel terminated loads with series resistor ($V_{TT} = 0.5 \times V_{DDQ}$)

Table 3.2-a Output DC current drive

<table>
<thead>
<tr>
<th>Symbol (DC)</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOH</td>
<td>Output minimum source DC current</td>
<td>-15.2</td>
<td></td>
<td>mA</td>
<td>1, 3, 4</td>
</tr>
<tr>
<td>IOL</td>
<td>Output minimum sink DC current</td>
<td>18.2</td>
<td></td>
<td>mA</td>
<td>2, 3, 4</td>
</tr>
</tbody>
</table>

<Notes>

1. $V_{DDQ} = 2.3$ V, $V_{OUT} = V_{DDQ} - 0.43$V
2. $V_{DDQ} = 2.3$ V, $V_{OUT} = 0.35$V.
3. The DC value of V_{RFF} applied to the receiving device is expected to be set to V_{TT}.
4. The values of IOH(DC) and IOL(DC) are based on $V_{DDQ} = 2.3$V and $V_{TT} = 1.11$V. They are used to test device current drive capability which ultimately delivers acceptable noise margin for an SSTL_2 receiver. Under these conditions V_{OH} is 1.87V and V_{OL} is 0.35V. Under other conditions for V_{nPD} and V_{nT} the typical output levels are discussed in Section 3.0 (Overview).

Figure 3.2 An example of SSTL_2, Class II, symmetrically double parallel terminated output load with series resistor.
3.2.2 SSTL_2 Class II output AC test conditions

This testing regimen is used to verify SSTL_2 Class II type output buffers (push-pull output buffers designed for symmetrically double parallel terminated loads with series resistor).

This section is added to set the conditions under which the driver AC specifications can be tested. The test circuit is assumed to be similar to the circuit shown in Figure 3.2. It was agreed in JEDEC discussions that AC test conditions could be measured under nominal voltage conditions as long as the supplier can demonstrate by analysis, that the device will meet its timing specifications under all supported voltage conditions. Table 3.2-b assumes that +/- 0.38V must be developed across the effectively 25Ω termination resistor at \(V_{IN} \). With a series resistor of 25Ω this translates into a minimum requirement of 0.76Volt swing relative to \(V_{IL} \), at the output of the device.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Condition</th>
<th>Value</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH})</td>
<td>Minimum required output pull-up under AC test load</td>
<td>(V_{IH} + 0.76)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Maximum required output pull-down under AC test load</td>
<td>(V_{IL} - 0.75)</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output timing measurement reference level</td>
<td>(0.5 \times V_{DD})</td>
<td>V</td>
<td>1</td>
</tr>
</tbody>
</table>

<Note>

The \(V_{DD} \) of the device under test is referenced.
4. **Other Application (For reference only)**

The specifications for Class I and II were based on an environment comprising both series and parallel terminating resistors. In this non-binding section we will show some derived applications. Clearly it is not the intention to show all possible variations in this standard.

4.1 **Push-pull output buffer for unterminated loads**

In many applications where interconnections are short, there is no need for any termination at all. An example of this is shown in Figure 4.1. This application can be served by a Class I or Class II type buffer and an SSTL_2 type receiver.

![Figure 4.1](image)

4.2 **Push-pull output buffer for symmetrically single parallel terminated loads \((V_{TT} = 0.5 \times V_{DDQ}) \)**

Sometimes the system application requires longer transmission lines that will only be terminated at one end. An example of this may be address drivers on a memory board. This application can also be served with a Class I or Class II type buffer and an SSTL_2 receiver. An example is shown in Figure 4.2.

![Figure 4.2](image)
4.3 Push-pull output buffer for externally source series terminated loads

In other applications the system designer may wish to terminate at the signal source rather than at the end of the transmission line. One advantage of this approach is that there is no need for a \(V_{PP} \) power supply. This application may again be served with a Class I or Class II type buffer and SSTR_2 receiver. An example is shown in Figure 4.3. In this example a Class II type buffer might be preferred since it comes closer, in conjunction with the series resistor, to match the characteristic impedance of the transmission line.

![Diagram](image)

Figure 4.3 An example of SSTR_2, Class I or Class II, Externally Source Series terminated output load

4.4 Push-pull output buffer for symmetrically double parallel terminated loads

(\(V_{TT} = 0.5 \times V_{DDQ} \))

Finally, the system designer may require a bus system which must be terminated at both sides. However, the drivers are connected directly onto the bus so there are no stubs present. In that case, the designer may decide to eliminate the series resistors entirely. This application can be implemented using a Class I or Class II driver and SSTR_2 receiver. However a Class II buffer would dissipate more power due to its larger current drive and thus might require special cooling. An example is shown in Figure 4.4.

![Diagram](image)

Figure 4.4 An example of SSTR_2, Class I, buffer with symmetrically double parallel terminated output load
EXPLANATORY NOTES

1. Objectives of Establishment
 This standard has been established as a related standard derived from "Stub Series Terminated Logic for 3.3V (SSTL_3)" established in March, 1996, aiming to separate bus from moderately long stub through the external serial resistance at the 2.5V memory module, memory board, etc., perform the small signal amplitude operation by connecting to terminated voltage through the parallel resistance, and adjust impedance to establish noise margin and perform the low-power and high-speed operation. This standard defining each provision for the output driver and the input receiver, is established as the 100–200MHz high-speed interface standard along with the faster MPU.

2. Process of Discussion
 When "Stub Series Terminated Logic for 3.3V (SSTL_3)" was established in March, 1996, the development to shift the system power supply voltage from 3.3V to 2.5V has already started along with process technologies development for faster memory devices.
 At the time, this standard was proposed as the voltage scaling of SSTL_3 as the related standard derived from SSTL_3 interface, and submitted to the JEDEC JC-16 Low Voltage Operation and Interface Committee ("JEDEC" hereafter), the sub-organization of the Electronic Industries Association in U.S. in September, 1996.
 While the JEDEC discussion continued, it was proceeded to standardize the interface specifications used for faster memories such as DDR SDRAM, SDRAM, etc. devices, and review the interface performance through simulations in cooperation with JEDEC. The final standard draft was agreed with EIAJ and JEDEC, submitted to JDEC in September, 1997, and passed the JEDEC JC-16 Committee in December. SSTL_2 standard is the collaborated standard of EIAJ and JEDEC.
3. **Members of Committee**

This standard was discussed mainly by Memory Subcommittee and IC Low Voltage operation subcommittee on Semiconductor Standardization Committee/Integrated Circuit G (group). The members are as shown below.

<Semiconductor Standardization Committee>

Chairman Mitsutoshi Ito NEC Corp.

<Semiconductor Standardization Committee/Integrated Circuit G>

Chief Examiner Motoo Nakano Fujitsu Ltd.

<Memory Subcommittee>

Chief Examiner Yoshiharu Nishiwaki Oki Electric Industry Co., Ltd.
Vice-Chief Examiner Mitsuo Higuchi Fujitsu Ltd.
Member Young Jun Roh LG Japan, Inc.
Shinya Takahashi Oki Electric Industry Co., Ltd.
Jeong-II Kim Hyundai Electronic Industry Japan, Inc.
Kenichi Kuramoto Sanyo Electric Co., Inc.
Yukichi Murakami Sharp Corp.
Yasuhiko Takahashi Shin Nippon Steel Co.
Akira Uematsu Seiko Epson Co.
Hitoshi Taniguchi Sony Corp.
Toshio Kinura Toshiba Corp.
Sejin Kim Samson Japan Corp.
Soichiro Kamei Texas Instruments Japan Ltd.
Masaharu Yajima NEC Corp.
Yasuhiro Suenaga Nippon Motorola Ltd.
Atsushi Hiraishi Hitachi, Ltd.
Masao Ikushima Matsushita Electric Industrial Co., Ltd.
Kazutami Arimoto Mitsubishi Electric Corp.
Hideki Hayashi ROHM Ltd.

Special Member Mitsuo Yasuhira Matsushita Electronics Corp.
Miwa Menma NEC Corp.
Yoshikazu Asakura NEC Corp.
IC Low Voltage operation Subcommittee

Chief Examiner
Misuo Yasuhira
Toshiaki Matsubara

Vice-Chief Examiner
Tsunori Tajima
Yoshinori Yamamoto

Member
Young-ok Kim
Tae-Yeop Oh
Ryoichi Kumazawa

Atsuo Koshizuka
Atsushi Iida
Yoshiaki Hagiwara

Toru Asano
Teruo Ishii
Takashi Awaya

Shosuke Mori
Shosuke Ishikura
Kenji Matsuoka

Yasunobu Nakase
Yukichi Ono
Noboru Takizawa

Special Member
Yoshiharu Nishiwaki

Guest Member
Kazuhiko Eguchi

Matsushita Electronics Co., Ltd.
Hitachi, Ltd.

Oki Electric Industry Co., Ltd.
Kawasaki Steel Corp.

Hyundai Electronic Industry Japan Inc.
Samsung Electronics Japan Co., Ltd.

Sharp Corp.
Nippon Steel Co.

Seiko Epson Co.
Sony Corp.

IBM Japan, Ltd.
Texas Instruments Japan Ltd.

Hitachi, Ltd.
Fujitsu Ltd.

Matsushita Electric Industrial Co., Ltd.
Toshiba Corp.

Mitsubishi Electric Corp.
Yamaha Ltd.

Rohn Ltd.
Oki Electric Industry Co., Ltd.

Hitachi, Ltd.