JEITA

Technical Report of Japan Electronics and Information Technology Industries Association

EIAJ EDR-7327

Design guideline of integrated circuits for Single Inline Package

Established in January, 2001

Prepared by
Technical Standardization Committee on Semiconductor Device Package

Published by
Japan Electronics and Information Technology Industries Association
5-13, Nishi-shimbashi 1-chome, Minato-ku, Tokyo 105-0003, Japan
Printed in Japan

Technical Report of Japan Electronics and Information Technology Industries Association Design guideline of integrated circuits for Single Inline Package
(SIP)

1. SCOPE OF APPLICATION

This technical report regulates outline drawings and dimensions of Plastic Single Inline Package (hereinafter referred to as SIP) whose terminal pitch is 2.54 mm , and 17.78 mm , among the packages classified as form C in EIAJ ED-7300 (Recommended practice on General Rule for preparing standard outline drawings (integrated circuits) of semiconductor devices)
Note This technical report is the revised edition of EIAJ ED-7413.
2. TERMS

The definition of the terms used in this technical report complies with EIAJ ED-7300. New terms define in the description of this report.

3. BACKGROUND

This technical report intended to standardize the outer dimensions of SIP, and ensure compatibility between products. It shows the standard design values on concept of the design centers as far as possible for standardization.

4. DEFINISION OF SIP

SIP is classified as FORM C in item 6 "Out line classification of the semiconductor package" of EIAJ ED-7300, and defined a package with T/H terminals which are led out of the longer side of itself in single direction and which are perpendicular to the surface of a PCB.

5. NUMBER OF TERMINALS

Number of terminals complies with the EIAJ ED-7300.

6. NOMINAL DIMENSIONS

The dimension of package height \times package length (Symbol: A2nom \times D1nom) is applied to nominal dimensions.

7. REFERENCE CHARACTERS AND DRAWING

7.1 Outline Drawings

Figure 1

Figure 2

Note (${ }^{1}$) The mounting plane is the dimension that determined when the pins are completely inserted in the holes that are sized $\phi 0.8 \pm 0.05 \mathrm{~mm}$.
$\left({ }^{2}\right)$ The maximum material conditions apply to the positional tolerance of the terminals.
$\left({ }^{3}\right)$ The index mark indicates the pin NO.1. By the way, $1 / 2$ or more of the area of this index mark must be contained within the hatched zone.
$\left.{ }^{4}\right)$ The shape of the chamfer for visual index and mechanical index is arbitrary, by the shape shown in the figure below is recommended.
$\left({ }^{5}\right)$ The dimensions of terminal section apply to the ranges from 1.0 mm to 1.5 mm from the tip of terminals.

8. OUTER DIMENNSION

Table 1 below shows the standard dimension. Combination of the standard dimension shown below allow a number of package variation. IF packages are design newly, their dimensions shall be selected in the Table of Standard Package Dimension List in the Appendix.

8.1 Group 1

Table 1
unit: mm

Table 1 (continued)
unit: mm

Description	Symbol	Standard Seated hight				A

Table 1 (continued)
unit: mm

Table 1 (continued)
unit: mm

Description	Symbol	Standard	Recommended Values	Remarks
Positional tolelance of terminal	X	$\mathrm{x}=0.25$		
Number of terminals	n	(a) Number of terminal are determined as follows. (b) The maximum number of pins that can be arranged within the cage body should be " n ". (c) The actual number of pins may be smaller than " n ". It must be remembered, however, that the first and the " n "th pins must exist without fail irrespective of the actual number of pins.		

8.2 Group 2

Table 2
unit: mm

9. STANDARD PACKAGE LIST

To further clarify the combinations of part dimensions, the combinations of recommended package classifications shall be indicated as shown below as assistance in the design and development of new packages in the future.

Table 2 STANDARD PACKAGE LIST

Nominal Dimensions Package height \times Package length $\mathrm{A}_{\text {2nom }} \times \mathrm{D}_{\text {1nom }}$				
n	$\mathrm{A}_{\text {2nom }}=4.58$ 盅 $=2.54$			$\mathrm{~A}_{2 \text { nom }}=4.58 \mathrm{e}=1.778$
	$\mathrm{Z}_{\text {Inom }}=0.889$	$\mathrm{Z}_{\text {Inom }}=1.270$	$\mathrm{Z}_{\text {Inom }}=1.270$	$\mathrm{Z}_{\text {1nom }}=2.159$
5	4.58×11.93	4.58×9.65	4.58×9.65	4.58×11.43
6	4.58×14.47	4.58×11.43	4.58×11.43	4.58×13.20
7	4.58×17.01	4.58×13.20	4.58×13.20	4.58×14.98
8	4.58×19.55	4.58×14.98	4.58×14.98	4.58×16.76
9	4.58×22.30	4.58×16.76	4.58×16.76	4.58×18.54
10	4.58×24.63	4.58×18.54	4.58×18.54	4.58×20.32
11	4.58×27.17	4.58×20.32	4.58×20.32	4.58×22.09
12	4.58×29.71	4.58×22.09	4.58×22.09	4.58×23.87
13	4.58×32.25	4.58×23.87	4.58×23.87	4.58×25.65
14	4.58×34.79	4.58×25.65	4.58×25.65	4.58×27.43

Nominal Dimensions Package height \times Package length $\mathrm{A}_{2 \text { nom }} \times \mathrm{D}_{\text {1nom }}$

n	$\mathrm{A}_{2 \text { nom }}=7.12 \mathrm{e}=2.54$		$\mathrm{~A}_{2 \text { nom }}=7.12 \mathrm{e}=1.778$	
	$\mathrm{Z}_{\text {Inom }}=0.889$	$\mathrm{Z}_{\text {Inom }}=1.270$	$\mathrm{Z}_{\text {Inom }}=1.270$	$\mathrm{Z}_{\text {Inom }}=2.159$
5	7.12×11.93	7.12×14.47	7.12×9.65	7.12×11.43
6	7.12×14.47	7.12×17.01	7.12×11.43	7.12×13.20
7	7.12×17.01	7.12×19.55	7.12×13.20	7.12×14.98
8	7.12×19.55	7.12×22.30	7.12×14.98	7.12×16.76
9	7.12×22.30	7.12×24.63	7.12×16.76	7.12×18.54
10	7.12×24.63	7.12×27.17	7.12×18.54	7.12×20.32
11	7.12×27.17	7.12×29.71	7.12×20.32	7.12×22.09
12	7.12×29.71	7.12×32.46	7.12×22.09	7.12×23.87
13	7.12×32.25	7.12×34.79	7.12×23.87	7.12×25.65
14	7.12×34.79	7.12×37.33	7.12×25.65	7.12×27.43

Nominal Dimensions Package height \times Package length $\mathrm{A}_{2 \text { nom }} \times \mathrm{D}_{\text {1nom }}$

n	$\mathrm{A}_{2 \mathrm{nom}}=9.66 \text { ह }=2.54$		$\mathrm{A}_{2 \text { nom }}=9.66$ ¢ $=1.778$	
	$\mathrm{Z}_{1 \text { nom }}=0.889$	$\mathrm{Z}_{1 \text { nom }}=1.270$	$\mathrm{Z}_{1 \mathrm{nom}}=1.270$	$\mathrm{Z}_{1 \mathrm{nom}}=2.159$
5	9.66×11.93	9.66×14.47	9.66×9.65	9.66×11.43
6	9.66×14.47	9.66×17.01	9.66×11.43	9.66×13.20
7	9.66×17.01	9.66×19.55	9.66×13.20	9.66×14.98
8	9.66×19.55	9.66×22.30	9.66×14.98	9.66×16.76
9	9.66×22.30	9.66×24.63	9.66×16.76	9.66×18.54
10	9.66×24.63	9.66×27.17	9.66×18.54	9.66×20.32
11	9.66×27.17	9.66×29.71	9.66×20.32	9.66×22.09
12	9.66×29.71	9.66×32.46	9.66×22.09	9.66×23.87
13	9.66×32.25	9.66×34.79	9.66×23.87	9.66×25.65
14	9.66×34.79	9.66×37.33	9.66×25.65	9.66×27.43

10．STANDARD RESISTRATION

When you need to resister a new outline specification on the standard，complete the appendix format 5 in The Standardization Committee on Semiconductor Device Package steering rule，in compliance with the Standardization Rule．

In order to make a package dimension table，which comes under Item 2，Appendix format 5，fill the dimensions marked with $(レ)$ in the following Table 3.

Table 3

Serial Number				
$\begin{gathered} \text { External Type } \\ \hline \text { Reference Symbol } \\ \hline \end{gathered}$		P－SIPOOO－OOOOXOOOO－O．OO		
		min	nom	max
	A	$レ$		$レ$
	A_{1}	$レ$		レ
	A_{2}	V	\checkmark	レ
	A_{3}	V		V
	b	V		V
	b_{1}	レ		レ
	b_{2}	\checkmark		\checkmark
	b_{3}	\checkmark		\checkmark
	b_{4}	\checkmark		\checkmark
	c	V		レ
	c_{1}	\checkmark		レ
	e		\checkmark	
	E			\checkmark
	D			\checkmark
	D_{1}		\checkmark	V
	x			\checkmark
	n		\checkmark	
$\text { 言 } N$	Z			レ
	Z_{1}			\checkmark
	L	\checkmark		\checkmark

11．RERATED STANDARD

（1）EIAJ ET－9001
（2）EIAJ ED－7300
（3）EIAJ ED－7301
（4）EIAJ ED－7302
（5）EIAJ ED－7303
＂Rules for the drafting and presentation of EIAJ Standards＂
＂Recommended practice on General Rules for the preparation of outline drawings of semiconductor packages＂
＂Manual for the standard of integrated circuits package＂
＂Manual for integrated circuits package design guide＂
＂Names and code for integrated circuits package＂

EXPLANATORY NOTE

1. OBJECTIVES OF THE TECHNICAL REPORT

This technical report has been prepared to show the industry standard and offer design guideline when developing the Plastic Single Inline Package (hereinafter referred as SIP), and related parts.
Electronic Industries Association of Japan (EIAJ) and The Japan Electronic Development Association (JEIDA) have marged effective November 1,2000, the Japan Electronics and Information Technology Industries Association (JEITA).

2. HISTORY OF REVIEW

EIAJ ED-7413 would be abolished by the laps of ten years in 1999. Therefore, it was reviewed by Peripheral Package Subcommittee under " Technical Standardization Committee on Semiconductor Device Package" and was issued as design guideline.

3. KEY POINT FOR REVIEW

(1) Datum marking

The datum and geometrical tolerance were adopted from this technical report.
(2) Definitions of dimension

The recommended values in this technical report were adopted the values EIAJ ED-7413 as far as possible. And a format was changed in according to EIAJ ED-7302 "Manual for the Standard of integrated circuits package".
The dimension of package height \times package length (Symbol: A2nom \times D1nom)is applied to nominal dimensions. And terminal width before treatment (b1) and terminal thickness before treatment (c1) was newly shown and Pd plating is added.
(3) Standard package list

Standard package list was added in according to EIAJ ED-7302. The Package which were produced in 1999 were registered as standard packages.
(4) Standard registration

Standard registration list was added in according to EIAJ ED-7302.

4. Background for the respective dimensional rules

(1) Terminal width
b in EIAJ ED-7413 meant terminal width after treatment so it was replaced to b_{1} in this technical report. Terminal width before treatment was defined as b. Because terminal width before treatment $\left(b_{1}\right)$ was added, b_{1}, b_{2} in EIAJ ED-7413 replace b_{2}, b_{3} respectively. Pd plating was added to the exterior plating.
(2) Terminal thickness
c in the EIAJ ED-7413 meant terminal thickness after treatment, so it replaced c_{1} in this technical report. Terminal thickness before treatment was defined to as c . Pd plating was added to the exterior treatment. Solder dipping was deleted because of less possibility of adoption.

5. COMMITTEE MENBERS

This technical report has been discussed by the Peripheral Package Subcommittee of the Technical Standardization Committee on semiconductor Device Packages. The members are as shown below.

> <Technical Standardization Committee on Semiconductor Device Packages> Chairman \quad ELPIDA MEMORY, INC.
<Peripheral Package Subcommittee>
Chairman SANYO ELECTRIC CORP
Hideyuki Iwamura
Co-chairman
TOSHIBA CORP.
Yasuhiro Koshio
Co-chairman MATSUSHITA ELECTRONICS CORP. ENPLAS CORP.

Toshiyuki Fukuda Hideo Shimada
OKI ELECTRONICS INDUSTRY CO.,LTD
KYOCERA CORP.
Kazuhiko Sera

SHARP CORP.
Yoshihiro Nabe

SUMITOMO 3M CORP.
Hideya Haruguchi
SEIKO EPSON CORP.
Takayuki Nagumo

SONY CORP.
Yoshiaki Emoto

IBM JAPAN CORP. Tuneo Kobayashi
SAMSUNG ELECTORONICS JAPAN CO.,LTD. Hiroaki Hirao
NEC CORP. Kaoru Sonobe
NGK CORP.
Katsuaki Sugino
HITACHI LTD.
FUJITSU LTD.
FUJI ELECTRIC CO.,LTD.
Kaoru Tachibana MITSUBISHI ELECTRIC CORP.

Osamu Hirose

YMAICHI ELECTRIC CO.,LTD.
Kou Shimomura

UNITECHNO INC.
Nobuo Kawamura

ROHM Co.,LTD.
Hitoshi Matsunaga

ON SEMICONDUCTOR
Masahiro Tsuji
Ryo Sugawara

